Science Teaching 541

Geology and Mining Engineering for Teachers

Two Credit Hours

Prerequisites: ST 525 and ST 550

Instructor: Dr. William X. Chávez, Jr.
E-mail: wxchavez@nmt.edu
Office phone: (505) 835-5317

Course Designation: This course emphasizes the geology and natural resources of New México, and may be taken as a part of the requirements for MST-program participants in the areas of geology and in engineering. Backgrounds in geology and essential mathematics are required as prerequisites for this course.

Course Description: As a field-based course, students are exposed to the geology and mineral/natural resources of New México; in general, the course emphasizes the geology of a portion of the state, with field trips to sites of geologic and mining interest.

Depending on the area of the state visited, emphasis may be placed on metallic, non-metallic, and/or energy resource occurrence and extraction/utilization; this is especially relevant in the northwestern and southeastern portions of the state, where energy resources are important to local economies.

For the course offered during the regular Autumn or Spring semesters, the course comprises field trips to geologic parks, sites of interest, and mines in Arizona and New Mexico, taken over weekends. Participants are expected to submit homework assignments based on field trips as the major part of their grade.

Materials, Readings, and Resources: Because this is a field-based course, a traveling library is provided by the instructor; this library contains reference materials and geologic maps useful in the interpretation of New Mexico geology and the importance of geology in the occurrence of mineral resources and, therefore, mines.

In-the-field homework assignments utilize references provided, as well as materials provided by mining companies and by state parks; as such, students have up-to-date materials provided by specific locations visited, complementing materials and texts in the traveling library.

Course Content: Because this course deals with the geologic history of New México, the rocks that make up the state, and the mineral/natural resources (that are) important to the state’s economy, emphasis is placed on first-hand observation of the rock units that comprise the state, combined with discussions of how New México fits in with the regional geology of the southwest U.S., and New México’s contributions to mineral resources production.

In order to give students a good background in New México geology and mining issues, three aspects of such are regarded:

1. We consider the variation in the types and distribution of major rock units, present in New México and adjacent states - this permits
students to understand how local geology is really a reflection of greater geologic processes. These processes have provided New México with its current geologic setting and mineral resource endowment.

2. The link between geology and mineral resources is shown through visits to operating mines and mineral prospects - students see the connection between Earth processes, local and regional geology, and the occurrence of metallic/non-metallic resources. Mine visits provide students with the opportunity to discuss geology with professional geologists and engineers, complementing in-the-field lectures delivered by the instructor.

Importantly, students are expected to document their geologic and mine observations; to do this, teachers make photographic documentation of their observations, allowing them to take their information and observations back to the classroom for use in their appropriate grade levels and curricula.

3. As environmental concerns are an important consideration in mineral resource extraction and utilization, linked in this class to both geology and the use of natural resources, this course provides students with first-hand observations of how mining - and local rock types and settings - affect local and regional environmental concerns, especially those involving water issues. On an incipient basis, we discuss the ethical issues surrounding land use, mining, and environmental impacts.

Course goals:
1. Students are expected to demonstrate basic knowledge of rocks, minerals, and rock classification. Show-and-tell portions of the course allow students to discuss, with each other and with the instructor, how rocks are classified, the characterization of mineral resources, and how geologic (rock-forming) processes are linked to the occurrence of economic mineral resources.

 As a part of the course reference materials, students will learn to use rock classification charts, identify rock-forming minerals, and identify common ore minerals.

2. As a part of the series of courses available for teachers interested in improving their knowledge of geoscience and engineering applied to earth resources, this course is provides bases for further study of geology, environmental engineering, and mining issues. This includes social issues affecting peoples impacted by mining and minerals extraction, and the influence or potential influence of environmental changes on a community.

 The engineering and science contents are applicable to course completion progress toward the Master of Science Teaching degree.

3. This course asks students to draw upon their backgrounds in chemistry and physics, as well as their preparation in Earth sciences: discussions of the environmental aspects of mining inherently require considerations of general chemical reactions, involving (in these cases) reactions between waters and rocks. Furthermore, an incipient understanding of the formation of ore deposits requires knowledge of the very basic chemistry of metallic elements.

 Physics is considered in dealing with rock mechanics issues and the nature of surface and underground mines: how are rock slopes maintained - and optimized - in open pit mines, and how are structures
within rock constructed and maintained, even with changes in rock type and rock strength?

These subjects are discussed by the instructor, complemented by in-the-field presentations from mine geologists and engineers.

Schedule: This is a field course, involving two weeks of travel/camping within New México and, if appropriate, adjacent states. “Class” begins following breakfast, and continues until evening; students complete assignments during the day (usually during travel times) and in the evening following dinner.

It is expected that all “homeworks” and field assignments be completed daily; however, some assignments may require several days, usually for observations and on-the-road research.

Attendance: As a field class, students are required to participate in all activities, so attendance is required.

Grading: Grades is based on written field assignments, quiz scores, and several field projects. This includes assignments that involve questioning mine geologic and engineering staff, using a set of questions posed by the instructor: this allows students to interact directly with professionals in the fields of geology, environmental engineering, and mine engineering.

Grades are assessed by considering the accuracy, detail, and completeness of answers; however, some questions are intentionally written with the idea of encouraging personal expression/opinions, and therefore allow students some leeway in their answers. These questions are graded based on the ability of teachers to document and support their answers with observations and acquired facts.

Assessment: Students are given a final – and usually subjective – assignment that allows assessment of their writing ability, incorporation and documentation of their personal observations, and interpretation of (their) observations.

Importantly, students are compared to other teachers that have taken this course, providing the instructor with an evaluation of his ability to instruct, and the ability of teachers to absorb and assimilate information in a field setting.

Help: Students are encouraged to work together, and to help each other on making observations, documenting those observations, and understanding assignments. The instructor leads group discussions, and is available to answer questions concerning what-has-been-observed each day, and to answer questions concerning assignments.

It is acknowledged that students will, as a matter of course, discuss questions and answers amongst themselves; this is appropriate, provided that students work diligently on their own answers, and that they identify their contributions to a particular answer. The instructor is available throughout the course to help with questions/problems.
COMPETENCIES FOR ENTRY-LEVEL SCIENCE TEACHERS:

<table>
<thead>
<tr>
<th>A. Instruction and Assessment: Preparation to teach science shall involve:</th>
<th>addresses competency</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Inquiry, Including the Scientific Method</td>
<td>X</td>
</tr>
<tr>
<td>(a) Select and use a variety of instructional strategies and materials for teaching science meeting the needs of all students.</td>
<td>X</td>
</tr>
<tr>
<td>(b) Implement active inquiry based learning activities conducive to the development of scientific processes, critical thinking skills, and problem solving skills.</td>
<td>X</td>
</tr>
<tr>
<td>(c) Implement design technology/scientific method: identify a problem; propose a solution; implement proposed solutions; evaluate product or design; communicate a problem, design, and solution.</td>
<td>X</td>
</tr>
<tr>
<td>(d) Implement technology, including computers, interactive video, telecommunication, scientific instrumentation, and others.</td>
<td></td>
</tr>
<tr>
<td>(2) Content Integration</td>
<td>X</td>
</tr>
<tr>
<td>(a) Develop student understanding of the interconnectedness of the sciences and relate the major concepts of chemistry, earth and space science, physics, and biology to the teaching of science.</td>
<td></td>
</tr>
<tr>
<td>(b) Develop meaningful application of all content areas, including math, technology, language arts, social studies, and arts, in the delivery of science instruction.</td>
<td>X</td>
</tr>
<tr>
<td>(3) Designing and Managing Learning Environment</td>
<td>X</td>
</tr>
<tr>
<td>(a) Fulfill the professional and legal obligations of teaching.</td>
<td>X</td>
</tr>
<tr>
<td>(b) Incorporate the proper use of science tools, materials, media, and technological resources.</td>
<td>X</td>
</tr>
<tr>
<td>(c) Establish and maintain safety in all areas related to science instruction.</td>
<td>X</td>
</tr>
<tr>
<td>(d) Use and care for living organisms in an ethical and appropriate manner.</td>
<td></td>
</tr>
<tr>
<td>(4) Effective and Ongoing Assessment to Improve Student Learning</td>
<td>X</td>
</tr>
<tr>
<td>(a) Use assessment techniques such as performance testing, interviews, portfolios, and observations, for assessing student outcomes which are aligned with instruction and consistent with contemporary assessment.</td>
<td></td>
</tr>
<tr>
<td>(b) Use assessment tasks which may be appropriately modified to accommodate the needs of students with physical disabilities, learning disabilities, limited English proficiency, and cultural diversity.</td>
<td></td>
</tr>
</tbody>
</table>

B. History and Nature of Science: Preparation to teach science shall include:

(1) Diversity and Human Endeavor	X
(a) Describe science careers and reasons why people choose science as a career, including the impact of culture, gender, and other, factors.	X
(b) Describe the science contributions of people from a variety of social and ethnic backgrounds who have diverse interests, talents, qualities, and motivations.	X
(c) Develop student understanding of the relationships among science, technology, and cultural values.

(d) Recognize and respond to student diversity and encourage all students to participate fully in science learning.

(2) Empirical Observation

(a) Explain that science distinguishes itself from other bodies of knowledge through the use of empirical standards, logical argument, and skepticism.

(b) Explain that scientific ideas depend on experimental and observational confirmation.

(3) Historical Perspectives

(a) Understand that the body of scientific knowledge is continually being expanded and refined.

(b) Explain how theories and ideas throughout the history of science are refined or discarded as new evidence becomes available.

(c) Explain how Western, non-European, and New Mexican cultures have developed scientific ideas and contributed to scientific knowledge.

C. Content Categories: The following areas are designed to allow potential science teachers to construct their pre-service education with an emphasis in one content area, while insuring they receive science education in any area which they might be required to teach. Preparation to teach science shall enable the teacher to understand and be able to teach within at least one of these emphases:

(1) Life Science Emphasis: All science teachers, grades K-12 will be able to identify and understand the relationship among major concepts and principles of biology, including anatomy, physiology, ecology, behavior of organisms, evolution, genetics, cell biology, microbiology, classification, and human biology.

(a) Teachers know and understand the characteristics that are the basis for classifying organisms.

(i) Teachers for grades K-4 will demonstrate an awareness of living things including basic cellular functions and processes, structures, the roles of organisms in systems comprised of living and non-living components and describe life cycles of plants and animals.

(ii) Teachers for grades 5-8 will use information about functions and cell structures to explain replication, reproduction, heredity, and disease, and categorize organisms based on methods of reproduction and offspring development.

(iii) Teachers for grades 9-12 will apply information about cell structures and functions to the world in which they live including understanding of DNA, RNA, natural selection processes, and diversity in plants and animals and use biological classifications to understand how organisms are related.

(b) Teachers will know and understand the synergy among organisms and the environments of organisms.
(i) Teachers for grades K-4 will explain how an organism's behavior is related to its physical environment; describe the roles of plants and animals in the flow of energy; describe how environmental pressures may accelerate changes in organisms; describe populations, communities, and systems; describe the impact humans have on the environment; understand natural resources (renewable versus non-renewable) and how each relates to humans’ basic needs, and describe elements essential to good health.

(ii) Teachers for grades 5-8 will understand organisms' physical and behavioral adaptations and how changes occur over time; describe how organisms meet their needs, grow, and reproduce while sustaining stable local surroundings within an ever-changing larger environment; predict organisms' behaviors that may result from external stimuli; use information about variation and diversity to explain population changes over time; categorize organisms based on their roles within the ecosystem in which they live; examine the impact humans have on the living and non-living world including issues related to overpopulation; illustrate the relationships among renewable and non-renewable resources and population, and model responsible health practices including issues relating to nutrition and exercise.

(iii) Teachers for grades 9-12 will explain cellular responses to environmental threats to the organism ranging from the production of antibodies to changes in coloration; understand the pathways of energy within a living organism; predict an organism's behavioral responses to internal and external changes and to external stimuli as a function of inherited and acquired characteristics; create models that mimic a population's response to internal and external environment pressures; predict the impact humans might have on a species or system including resource depletion and over population, and interpret the relationships between personal choices and health.

(2) Physical Science Emphasis: All science teachers, grades K-12, will be able to identify and understand the relationships among chemistry concepts including organic, inorganic, analytical, physical, and biochemical and identify and understand the relationships among physical concepts including mechanics, electricity, magnetism, thermodynamics, waves, optics, atomic, and nuclear physics.

(a) Teachers will be able to know and understand the properties of matter.

(i) Teachers for grades K-4 will describe the observable properties of common items and substances and explain that elements are the basic units of all matter.

(ii) Teachers for grades 5-8 will identify the properties of elements and compounds such as density, boiling point, and solubility and that these characteristics are independent of amount of the sample and articulate that chemical reactions occur in a predictable fashion and that the formation of compounds adheres to imperatives as conservation of matter.

(iii) Teachers for grades 9-12 will compare and contrast elements and compounds based upon the knowledge of the atomic/subatomic structures of matter and predict how atoms interact based upon sharing or transference of outer electrons.

(b) Teachers will know and understand the properties of fields, forces, and motion.
(i) Teachers for grades K-4 will describe how an object may be described with regard to its relative position to other objects; explain that an object's motion may be described by indicating change over time and describe how the earth's gravity pulls objects toward it.

(ii) Teachers for grades 5-8 will illustrate how Newton's Laws describe objects in motion; describe quantitatively how an object's position, speed and motion explain motion and compare and contrast forces affecting the physical world.

(iii) Teachers for grades 9-12 will apply knowledge of the constancy of energy in the universe and the forms that energy take in daily life; predict the motion of an object based on the net applied force applied to the object and explain and graphically describe that a specific mass exerts a force on others masses (velocity and acceleration).

(c) Teachers will know and understand the concepts of energy and energy transformation.

(i) Teachers in grades K-4 will describe the basic characteristics of light, heat, sound, and electromagnetism, and explain that energy exists in many forms and can be transformed and describe the process of chemical reactions and how time is a factor in chemical reactions.

(ii) Teachers in grades 5-8 will apply knowledge of energy and energy transformation to science problems; explain how chemical reactions can take place over periods of time and explain how concentration, pressure, temperature, and catalysts may affect chemical reactions.

(iii) Teachers in grades 9-12 will demonstrate their understanding of energy by identifying examples of transformations within and outside the school environment and devise scientific investigations demonstrating the impact of temperature and other variables on chemical reactions.

(3) Earth and Space Science Emphasis: All science teachers, grades K-12, will know and understand properties of earth and space science.

(a) Teachers in grades K-4 will describe the physical and chemical properties of earth's materials and the states of matter; describe the uses of earth's materials as resources and the sun as the major source of energy; describe changes in the earth's surface; describe changes in weather; recognize that fossils provide a record of animals and plants that lived long ago; represent the school and local community using symbols and maps; describe basic components of and movements within the solar system; identify the types of instruments and vehicles used for space exploration and describe human's movement toward space from early observations to recent explorations.
(b) Teachers in grades 5-8 will explain how earth's materials can be transformed from one state to another; experiment with earth's materials using them as resources; model natural resources that shape the earth's surface; observe, measure, and record weather changes; explain how fossils are formed and how fossils provide evidence of complexity and diversity over time; use rectilinear coordinate systems such as latitude and longitude to locate points on the earth's surface; describe the interactions among the earth's lithosphere, hydrosphere, atmosphere, and biosphere; explain simple data derived from recent remote and direct observations in the solar system and space beyond; model the predictable patterns of the sun and planets in the solar system and cite benefits from continued exploration of space.

(c) Teachers in grades 9-12 will evaluate information about earth's materials, energy, and geochemical cycles; model the interaction between the earth's internal and external energy sources; use tectonic theory to predict changes in the earth's surface; model weather patterns and other natural cycles related to the movement of matter driven by the earth's internal and external sources of energy; use fossil and other evidence to investigate how the earth changes; extend mapping techniques to learning in science and other content areas; explain the evolution of earth in terms of the interactions among the geosphere, hydrosphere, atmosphere, and biosphere; model interactions between components of the earth based on the understanding of the earth as a system containing a fixed amount of each stable chemical or element; trace the development of space exploration and discuss how recent missions impact understanding of the earth; evaluate the hierarchy of structures in the universe from atoms to galaxies and identify the pros and cons of various scientific theories for the origin of the universe based on scientific evidence.

(4) Environmental Science Emphasis: All science teachers, grades K-12, will be able to identify and apply major concepts of environmental science such as ecosystems, energy flow, population ecology, natural resources, meteorology, geology, oceanography, and conservation.

D. Environmental, Personal and Social Implications: Preparation to teach science shall enable teachers to understand and be able to teach:

(1) Personal, community, New Mexico and global environmental issues;

(2) The approaches to evaluate the ethical implications of new developments in science;

(3) Personal and community health issues;

(4) Decision-making and value-analysis skills for investigating science-related societal problems;

(5) Ethical use and care of living organisms.

E. Professionalism: Teacher education programs shall develop reflective practitioners who:

(1) Foster in their students scientific interest and curiosity.

(2) Participate in professional scientific organizations.

(3) Serve as representatives of the scientific community.

(4) Engage students in coherent, focused, student centered science curriculum, consistent with state and national standards.
<table>
<thead>
<tr>
<th>(5) Identify and use a variety of community resources including local expertise, industry, local environmental settings, and families.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(6) Take advantage of collaborative planning among colleagues, scientists, and science teacher educators, so that science, science methods, and other program components are mutually reinforcing.</td>
</tr>
<tr>
<td>(7) Explore and evaluate the process of curriculum and instructional implementation.</td>
</tr>
</tbody>
</table>